為了校核俄羅斯阿穆?tīng)枤怏w處理站項(xiàng)目艙體結(jié)構(gòu)設(shè)計(jì)的合理性,采用有限元仿真的方法,建立艙體的3維有限元仿真模型,進(jìn)行靜止平放狀態(tài)下艙體承力框架、地腳螺栓的強(qiáng)度及計(jì)算分析;進(jìn)一步的,分析艙體吊裝狀態(tài)下的艙體、起吊點(diǎn)和吊具強(qiáng)度。通過(guò)有限元仿真數(shù)據(jù)的處理,對(duì)關(guān)鍵結(jié)構(gòu)件的強(qiáng)度及變形進(jìn)行分析,最后給出變形及強(qiáng)度校核結(jié)果。
3D finite element simulation model is built by the method of finite element simulation to calculate and analyze the strength of cabin bearing frames and anchor bolts in static placement, thus verifying the reasonability of the cabin structure design in the Russia Amur Gas Treatment Station Project, to further analyze the strength of the cabin, hoisting points and hoisting tools in hoisting state. The strength and deformation of key structural components are analyzed by processing finite element simulation data to finally present deformation and strength verification results.
艙體總體尺寸:15m(總長(zhǎng))×4.5 m(寬)×10.5m(總高),其中一層高2.8m、二層高3.5m(含坡頂3.75m)、三層高3.32m(含坡頂3.75m)。
Overall dimension of cabin: 15m (overall length) ×4.5m (width) ×10.5m (overall height), wherein the first layer is 2.8m high, the second layer 3.5m high (3.75m including slope top) and the third layer 3.32m (3.75m including slope top).