為了校核俄羅斯阿穆爾氣體處理站項目艙體結(jié)構(gòu)設(shè)計的合理性,采用有限元仿真的方法,建立艙體的3維有限元仿真模型,進(jìn)行靜止平放狀態(tài)下艙體承力框架、地腳螺栓的強(qiáng)度及計算分析;進(jìn)一步的,分析艙體吊裝狀態(tài)下的艙體、起吊點和吊具強(qiáng)度。通過有限元仿真數(shù)據(jù)的處理,對關(guān)鍵結(jié)構(gòu)件的強(qiáng)度及變形進(jìn)行分析,最后給出變形及強(qiáng)度校核結(jié)果。
3D finite element simulation model is built by the method of finite element simulation to calculate and analyze the strength of cabin bearing frames and anchor bolts in static placement, thus verifying the reasonability of the cabin structure design in the Russia Amur Gas Treatment Station Project, to further analyze the strength of the cabin, hoisting points and hoisting tools in hoisting state. The strength and deformation of key structural components are analyzed by processing finite element simulation data to finally present deformation and strength verification results.
艙體總體尺寸:15m(總長)×4.5 m(寬)×10.5m(總高),其中一層高2.8m、二層高3.5m(含坡頂3.75m)、三層高3.32m(含坡頂3.75m)。
Overall dimension of cabin: 15m (overall length) ×4.5m (width) ×10.5m (overall height), wherein the first layer is 2.8m high, the second layer 3.5m high (3.75m including slope top) and the third layer 3.32m (3.75m including slope top).
1.綜述
為了校核俄羅斯阿穆爾氣體處理站項目艙體結(jié)構(gòu)設(shè)計的合理性,采用有限元仿真的方法,建立艙體的3維有限元仿真模型,進(jìn)行靜止平放狀態(tài)下艙體承力框架、地腳螺栓的強(qiáng)度及計算分析;進(jìn)一步的,分析艙體吊裝狀態(tài)下的艙體、起吊點和吊具強(qiáng)度。通過有限元仿真數(shù)據(jù)的處理,對關(guān)鍵結(jié)構(gòu)件的強(qiáng)度及變形進(jìn)行分析,最后給出變形及強(qiáng)度校核結(jié)果。
3D finite element simulation model is built by the method of finite element simulation to calculate and analyze the strength of cabin bearing frames and anchor bolts in static placement, thus verifying the reasonability of the cabin structure design in the Russia Amur Gas Treatment Station Project, to further analyze the strength of the cabin, hoisting points and hoisting tools in hoisting state. The strength and deformation of key structural components are analyzed by processing finite element simulation data to finally present deformation and strength verification results.
艙體總體尺寸:15m(總長)×4.5 m(寬)×10.5m(總高),其中一層高2.8m、二層高3.5m(含坡頂3.75m)、三層高3.32m(含坡頂3.75m)。
Overall dimension of cabin: 15m (overall length) ×4.5m (width) ×10.5m (overall height), wherein the first layer is 2.8m high, the second layer 3.5m high (3.75m including slope top) and the third layer 3.32m (3.75m including slope top).
結(jié)構(gòu)強(qiáng)度分析報告考慮的載荷類型包括:
Load types considered in the structure strength analysis report include:
1.恒載荷
1. Dead load
2.內(nèi)部設(shè)備重量載荷;
2. Weight load of internal equipment;
3.活載荷;
3. Live load;
4.雪載荷;
4. Snow load;
5.風(fēng)載荷;
5. Wind load;
6.溫度載荷;
6. Temperature load;
7.地震載荷。
7. Seismic load.
強(qiáng)度分析時,根據(jù)設(shè)計規(guī)范,考慮恒載荷、臨時載荷(內(nèi)部設(shè)備載荷、活載荷、雪載荷、風(fēng)載荷、溫度載荷)和特殊載荷(地震載荷)組成的特殊載荷組合。
Consideration is given to special load combination composed of dead load, temporary load (internal equipment load, live load, snow load, wind load, temperature load) and special loads (seismic load) according to design specifications during strength analysis.
2.結(jié)構(gòu)設(shè)計標(biāo)準(zhǔn)
采用的相關(guān)標(biāo)準(zhǔn)和規(guī)范如下:
Relevant applied standards and codes are as follows:
(1)建筑規(guī)范Ⅱ-23-81*-鋼結(jié)構(gòu);
(1) Construction code Ⅱ-23-81*- steel structure:
(2)建筑規(guī)范2.01.07-85*-載荷和作用;
(2) Construction code 2.01.07-85*- load and function;
(3)客戶給定的技術(shù)文件。
(3) Technical documents provided by customers.